Explore and Plot by Vector Layer Attributes

Last updated on 2024-03-12 | Edit this page

WARNING

Warning in
download.file("https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/110m/physical/ne_110m_graticules_all.zip",
: cannot open URL
'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/110m/physical/ne_110m_graticules_all.zip':
HTTP status was '500 Internal Server Error'

ERROR

Error in download.file("https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/110m/physical/ne_110m_graticules_all.zip", : cannot open URL 'https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/110m/physical/ne_110m_graticules_all.zip'

Overview

Questions

  • How can I compute on the attributes of a spatial object?

Objectives

  • Query attributes of a spatial object.
  • Subset spatial objects using specific attribute values.
  • Plot a vector feature, colored by unique attribute values.

Things You’ll Need To Complete This Episode

See the lesson homepage for detailed information about the software, data, and other prerequisites you will need to work through the examples in this episode.

This episode continues our discussion of vector layer attributes and covers how to work with vector layer attributes in R. It covers how to identify and query layer attributes, as well as how to subset features by specific attribute values. Finally, we will learn how to plot a feature according to a set of attribute values. We will do this looking at data regarding Seagrass beds in Casco Bay from 2022 provided by the Maine DEP. For full metadata, see here.

Load the Data


We will continue using the sf and ggplot2 packages in this episode. Make sure that you have these packages loaded.

R

library(ggplot2)
library(dplyr)
library(sf)

We will continue to work with the ESRI shapefiles (vector layers). Let’s start looking at seagrass beds around Casco Bay from 2022.

R

# seagrass in 2022
seagrass_casco_2022 <- st_read(
  "data/maine_gov_seagrass/MaineDEP_Casco_Bay_Seagrass_2022/MaineDEP_Casco_Bay_Seagrass_2022.shp")

Query Vector Feature Metadata


As we discussed in the Open and Plot Vector Layers in R episode, we can view metadata associated with an R object using:

  • st_geometry_type() - The type of vector data stored in the object.
  • nrow() - The number of features in the object
  • st_bbox() - The spatial extent (geographic area covered by) of the object.
  • st_crs() - The CRS (spatial projection) of the data.

We started to explore our seagrass_casco_2022 object To see a summary of all of the metadata associated with our seagrass_casco_2022 object, we can view the object with View(seagrass_casco_2022) or print a summary of the object itself to the console.

R

seagrass_casco_2022

OUTPUT

Simple feature collection with 622 features and 15 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -70.24464 ymin: 43.57213 xmax: -69.84399 ymax: 43.93221
Geodetic CRS:  WGS 84
First 10 features:
   OBJECTID Id Name       Acres   Hectares Orth_Cover Cover_Pct Field_Ver
1         1  1   01  0.04456005 0.01803281          1      0-10         Y
2         2  4   02  0.06076669 0.02459141          3     40-70         Y
3         3  6   03  2.56218247 1.03687846          3     40-70         Y
4         4  8   05  0.71816162 0.29062970          3     40-70         Y
5         5  9   06  0.01815022 0.00734513          3     40-70         Y
6         6 10   07  0.33051475 0.13375458          3     40-70         Y
7         7 11   08  0.08088664 0.03273366          1      0-10         Y
8         8 13   09  0.66689055 0.26988103          1      0-10         Y
9         9 14   10  0.03080650 0.01246695          3     40-70         Y
10       10 15   11 12.54074080 5.07505774          4    70-100         Y
   Video_YN                          Video Comment        Species
1         Y                            A03    <NA> Zostera marina
2         Y                            A04    <NA> Zostera marina
3         Y                            A05    <NA> Zostera marina
4         Y                            A07    <NA> Zostera marina
5         Y                            A08    <NA> Zostera marina
6         Y                            A09    <NA> Zostera marina
7         Y                            A10    <NA> Zostera marina
8         Y                            A11    <NA> Zostera marina
9         Y                            A12    <NA> Zostera marina
10        Y A14, A15, A16, A17, SP07, SP08    <NA> Zostera marina
                                 GlobalID  ShapeSTAre ShapeSTLen
1  {7CAB9D54-4BF9-4B91-94D6-4F0EA4AD53C1}   180.32842  102.57257
2  {D5396F39-D508-45CB-BFE0-13A506D4E94C}   245.91500   84.35420
3  {3C1ED4DC-6580-4CAC-9499-32D445019068} 10368.78375  719.04025
4  {6C1395B8-F532-46C6-AFBA-23B14C2F2E02}  2906.29561  315.88722
5  {EDEDAFA1-8605-4FAC-910F-E6E864F51209}    73.45108   34.00204
6  {820DE3B5-BA6E-4415-A110-95F9F94A4F1C}  1337.54527  165.98655
7  {E4E2A155-7B1C-46C3-94B5-6D0E58B1FEBB}   327.33664  112.52478
8  {C7FEF8AC-9BA7-429C-A45B-270E836FBBA1}  2698.81099  295.01388
9  {356C58A4-DB72-445F-83DA-1035C8EAE917}   124.66947   43.47523
10 {C797140E-F9CB-4EA0-9D7C-FBEA50FE9EB2} 50750.58217 1949.02908
                         geometry
1  POLYGON ((-70.20081 43.5722...
2  POLYGON ((-70.20228 43.5869...
3  POLYGON ((-70.20858 43.5909...
4  POLYGON ((-70.21488 43.5924...
5  POLYGON ((-70.21499 43.5931...
6  POLYGON ((-70.21582 43.5963...
7  POLYGON ((-70.21618 43.5964...
8  POLYGON ((-70.21641 43.5971...
9  POLYGON ((-70.21498 43.6063...
10 POLYGON ((-70.22445 43.6425...

We can use the ncol function to count the number of attributes associated with a spatial object too. Note that the geometry is just another column and counts towards the total.

R

ncol(seagrass_casco_2022)

OUTPUT

[1] 16

We can view the individual name of each attribute using the names() function in R:

R

names(seagrass_casco_2022)

OUTPUT

 [1] "OBJECTID"   "Id"         "Name"       "Acres"      "Hectares"  
 [6] "Orth_Cover" "Cover_Pct"  "Field_Ver"  "Video_YN"   "Video"     
[11] "Comment"    "Species"    "GlobalID"   "ShapeSTAre" "ShapeSTLen"
[16] "geometry"  

We could also view just the first 6 rows of attribute values using the head() function to get a preview of the data:

R

head(seagrass_casco_2022)

OUTPUT

Simple feature collection with 6 features and 15 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -70.21582 ymin: 43.57213 xmax: -70.20057 ymax: 43.59667
Geodetic CRS:  WGS 84
  OBJECTID Id Name      Acres   Hectares Orth_Cover Cover_Pct Field_Ver
1        1  1   01 0.04456005 0.01803281          1      0-10         Y
2        2  4   02 0.06076669 0.02459141          3     40-70         Y
3        3  6   03 2.56218247 1.03687846          3     40-70         Y
4        4  8   05 0.71816162 0.29062970          3     40-70         Y
5        5  9   06 0.01815022 0.00734513          3     40-70         Y
6        6 10   07 0.33051475 0.13375458          3     40-70         Y
  Video_YN Video Comment        Species                               GlobalID
1        Y   A03    <NA> Zostera marina {7CAB9D54-4BF9-4B91-94D6-4F0EA4AD53C1}
2        Y   A04    <NA> Zostera marina {D5396F39-D508-45CB-BFE0-13A506D4E94C}
3        Y   A05    <NA> Zostera marina {3C1ED4DC-6580-4CAC-9499-32D445019068}
4        Y   A07    <NA> Zostera marina {6C1395B8-F532-46C6-AFBA-23B14C2F2E02}
5        Y   A08    <NA> Zostera marina {EDEDAFA1-8605-4FAC-910F-E6E864F51209}
6        Y   A09    <NA> Zostera marina {820DE3B5-BA6E-4415-A110-95F9F94A4F1C}
   ShapeSTAre ShapeSTLen                       geometry
1   180.32842  102.57257 POLYGON ((-70.20081 43.5722...
2   245.91500   84.35420 POLYGON ((-70.20228 43.5869...
3 10368.78375  719.04025 POLYGON ((-70.20858 43.5909...
4  2906.29561  315.88722 POLYGON ((-70.21488 43.5924...
5    73.45108   34.00204 POLYGON ((-70.21499 43.5931...
6  1337.54527  165.98655 POLYGON ((-70.21582 43.5963...

To understand what these columns mean, we can refer back to the original metadata that gives a better description.

Challenge: Attributes for Different Spatial Classes

Explore the attributes associated with the roads_maine and aoi_boundary_casco spatial objects.

  1. How many attributes does each have?

  2. What is the maximum speed posted speed limit on any road in Maine?

  3. Which of the following is NOT an attribute of the roads_maine data object?

  1. Speed Limit B) County C) Road Length
  1. To find the number of attributes, we use the ncol() function:

R

roads_maine <- st_read("data/maine_gov_maps/MaineDOT_Public_Roads/MaineDOT_Public_Roads.shp")

OUTPUT

Reading layer `MaineDOT_Public_Roads' from data source 
  `/home/runner/work/r-raster-vector-geospatial/r-raster-vector-geospatial/site/built/data/maine_gov_maps/MaineDOT_Public_Roads/MaineDOT_Public_Roads.shp' 
  using driver `ESRI Shapefile'
Simple feature collection with 100669 features and 30 fields
Geometry type: LINESTRING
Dimension:     XY
Bounding box:  xmin: -71.04662 ymin: 43.06728 xmax: -66.95202 ymax: 47.35999
Geodetic CRS:  WGS 84

R

ncol(roads_maine)

OUTPUT

[1] 31
  1. Ownership information is in a column named Ownership:

R

max(roads_maine$speed_lim, na.rm = TRUE)

OUTPUT

[1] 75
  1. To see a list of all of the attributes, we can use the names() function:

R

names(roads_maine)

OUTPUT

 [1] "OBJECTID"   "link_id"    "faadt"      "aadt_type"  "fed_urbrur"
 [6] "strtname"   "capacity"   "jurisdictn" "num_lanes"  "offic_mile"
[11] "st_urbrur"  "fedfunccls" "speed_lim"  "speedsrc"   "nhs_status"
[16] "priority"   "prirtecode" "prim_bmp"   "prim_emp"   "prirtename"
[21] "segment_id" "sh_sa_ir"   "townname"   "towncode"   "cntyname"  
[26] "cnty_no"    "surfc_type" "dot_region" "dot_regi_1" "Shape_Leng"
[31] "geometry"  

“Road Length” is not an attribute of this object.

Explore Values within One Attribute


We can explore individual values stored within a particular attribute. Comparing attributes to a spreadsheet or a data frame, this is similar to exploring values in a column. We did this with the gapminder dataframe in an earlier lesson. For spatial objects, we can use the same syntax: objectName$attributeName.

First, what do we have to work with?

R

names(seagrass_casco_2022)

OUTPUT

 [1] "OBJECTID"   "Id"         "Name"       "Acres"      "Hectares"  
 [6] "Orth_Cover" "Cover_Pct"  "Field_Ver"  "Video_YN"   "Video"     
[11] "Comment"    "Species"    "GlobalID"   "ShapeSTAre" "ShapeSTLen"
[16] "geometry"  

To see only unique values within the Cover_Pct field, we can use the unique() function for extracting the possible values of a character variable (R also is able to handle categorical variables called factors; we worked with factors a little bit in an earlier lesson.

R

unique(seagrass_casco_2022$Cover_Pct)

OUTPUT

[1] "0-10"   "40-70"  "70-100" "10-40" 

Subset Features

We can use the filter() function from dplyr that we worked with in an earlier lesson to select a subset of features from a spatial object in R, just like with data frames.

For example, we might be interested only in features that are of Hectares greater than 25. Once we subset out this data, we can use it as input to other code so that code only operates on the footpath lines.

R

large_beds <- seagrass_casco_2022 |>
  filter(Hectares > 25)

nrow(large_beds)

OUTPUT

[1] 4

Our subsetting operation reduces the features count 4 93. This means that 4 polygons in our spatial object are larger than 25 Hectares. We can plot only these big beds

R

ggplot() +
  geom_sf(data = large_beds, fill = "lightgreen") +
  ggtitle("2022 Seagrass Beds", subtitle = "Large Beds Only") +
  coord_sf()
Map of the large beds in the study area.
Map of the large beds in the study area.

There are four features in our large beds subset. But we don’t have any more information than that they are large. Let’s adjust the colors used in our plot. If we have 4 features in our vector object, we can plot each using a unique color by assigning a column name to the color aesthetic (fill =). We use the syntax aes(fill = ) to do this. Let’s look at Cover_Pct to differentiate sparse from dense beds.

R

ggplot() +
  geom_sf(data = large_beds, aes(fill = Cover_Pct)) +
  labs(color = 'Percent Cover of Seagrass') +
  ggtitle("2022 Seagrass Beds", subtitle = "Sparse Beds Only") +
  coord_sf()
Map of the large beds where they are classified by percent cover.
Map of the large beds where they are classified by percent cover.

Now, we see that there are in some dense and some sparse beds that are big.

Challenge: Subset Spatial Line Objects

Subset out all of the roads with cntyname == "Cumberland" county and plot it with the color showing the townname.

First we will save an object with only the roads in Cumberland:

R

cumberland_roads <- roads_maine %>%
  filter(cntyname == "Cumberland")

Let’s check how many features there are in this subset:

R

nrow(cumberland_roads)

OUTPUT

[1] 18246

Now let’s plot that data:

R

ggplot() +
  geom_sf(data = cumberland_roads, 
          aes(color = townname),
          size = 1.5) +
  ggtitle("Cumberland County", subtitle = "Roads") +
  coord_sf()
Map of the boardwalks in the study area.
Map of the boardwalks in the study area.

Challenge: Subset Spatial Polygon Objects and Plotting

Are dense beds large or small? From seagrass_casco_2022, subset out only the dense beds - Cover_Pct == "70-100".

  1. How many dense beds are there?

  2. What is the distribution of their size?

  3. Plotthem . To make it interesting, set the color (not the fill) to map to Hectares so that we can see where big dense beds exist. To further assist with this A) you will need to set linewidth = 2, as otherwise you won’t be able to see the beds well and B) you’ll need to use a binned color scale, like we did with rasters. I’m a fan of scale_color_viridis_b() here, but also feel free to try some options from scale_color_fermenter() or play with the n.bins argument.

  1. First we will save an object with only the stone wall lines and check the number of features:

R

dense_beds <- seagrass_casco_2022 %>%
  filter(Cover_Pct == "70-100")

nrow(dense_beds)

OUTPUT

[1] 79
  1. Is the distribution different than the size of all beds? Let’s see.

R

ggplot(data = dense_beds,
       aes(x = Hectares)) +
  geom_histogram(bins = 50)

It’s roughly similar, although there seem to be more mid-size beds.

  1. Last, we can plot the data:

R

ggplot() +
  geom_sf(data = dense_beds, aes(color = Hectares),
          linewidth = 2) +
  ggtitle("Casco Seagrass Beds in 2022", subtitle = "70-100% Cover") +
  coord_sf() +
  scale_color_viridis_b()
Map of the dense seagrass beds where beds are colored by size in hectares.
Map of the dense seagrass beds where beds are colored by size in hectares.

Customize Plots


In the examples above, ggplot() automatically selected colors for each line based on a default color order. If we don’t like those default colors, we can create a vector of colors - one for each feature.

First we will check how many unique levels our factor has:

R

unique(seagrass_casco_2022$Cover_Pct)

OUTPUT

[1] "0-10"   "40-70"  "70-100" "10-40" 

Then we can create a palette of four colors, one for each feature in our vector object.

R

bed_colors <- c("blue", "purple", "lightgreen", "orange")

We can tell ggplot to use these colors when we plot the data.

R

ggplot() +
  geom_sf(data = seagrass_casco_2022, 
          aes(color = Cover_Pct, fill = Cover_Pct),
          linewidth = 2) +
  scale_color_manual(values = bed_colors) +
  scale_fill_manual(values = bed_colors) +
  ggtitle("Casco Bay Seagrass Beds in 2022") +
  coord_sf() +
  theme_minimal()
Roads and trails in the area.
Roads and trails in the area.

Improve Our Plot Legend

Let’s improve the legend of our plot. We’ve already created a legenend for Cover_Pct by default. Let’s start by making the title be readable using labs() to give it titles. Note, color and fill must have the same title, otherwise the legend splits.

R

ggplot() +
  geom_sf(data = seagrass_casco_2022, 
          aes(color = Cover_Pct, fill = Cover_Pct),
          linewidth = 2) +
  scale_color_manual(values = bed_colors) +
  scale_fill_manual(values = bed_colors) +
  labs(color = '% Cover of Seagrass', fill = "% Cover of Seagrass") +
  ggtitle("Casco Bay Seagrass Beds in 2022") +
  coord_sf() +
  theme_minimal()

We can change the appearance of our legend by manually setting different parameters using the theme() function.

  • legend.title: change the legend title font size
  • legend.text: change the legend text font size
  • legend.box.background: add an outline box
  • legend.position: where you want the legend. Options include “none”, “left”, “right”, “bottom”, “top”, or two-element numeric vector.

Note, some of these will need an element_*() function. To dig deep deep into plot customization, see ?theme

R

ggplot() +
  geom_sf(data = seagrass_casco_2022, 
          aes(color = Cover_Pct, fill = Cover_Pct),
          linewidth = 2) +
  scale_color_manual(values = bed_colors) +
  scale_fill_manual(values = bed_colors) +
  labs(color = '% Cover of Seagrass', fill = "% Cover of Seagrass") +
  ggtitle("Casco Bay Seagrass Beds in 2022") +
  coord_sf() +
  theme_minimal(base_size = 14)  +
  theme(legend.title = element_text(size = 14),
        legend.text = element_text(size = 12),
        legend.box.background = element_rect(linewidth = 1),
        legend.position = "bottom")
Map of the beds in the 2022 area with large-font and border around the legend.
Map of the beds in the 2022 area with large-font and border around the legend.

theme_minimal() here is a premade ggplot2 theme. You can also use theme() to make your own customized themes.

Challenge: Visualizing Change

Create a similar plot from the 2023 data. There are some differences. Cover_Pct is slightly different. You’ll have to filter out the "0%“` beds in order to use the identical color palette (a good idea in order to see change).

Do you see differences between 2013 and 2022?

First we explore load and filter the data.

R

seagrass_casco_2013 <-
  st_read("data/maine_gov_seagrass/MaineDEP_Casco_Bay_Eelgrass_2013/") |>
  filter(Cover_Pct != "0%")

OUTPUT

Reading layer `MaineDEP_Casco_Bay_Eelgrass_2013' from data source 
  `/home/runner/work/r-raster-vector-geospatial/r-raster-vector-geospatial/site/built/data/maine_gov_seagrass/MaineDEP_Casco_Bay_Eelgrass_2013' 
  using driver `ESRI Shapefile'
Simple feature collection with 1056 features and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -70.2477 ymin: 43.5896 xmax: -69.84402 ymax: 43.93288
Geodetic CRS:  WGS 84

Then, honestly, we can re-use the same plotting code as above.

R

ggplot() +
  geom_sf(data = seagrass_casco_2013, 
          aes(color = Cover_Pct, fill = Cover_Pct),
          linewidth = 2) +
  scale_color_manual(values = bed_colors) +
  scale_fill_manual(values = bed_colors) +
  labs(color = '% Cover of Seagrass', fill = "% Cover of Seagrass",
       title = "Casco Bay Seagrass Beds in 2013") +
  coord_sf() +
  theme_minimal(base_size = 14)  +
  theme(legend.title = element_text(size = 14),
        legend.text = element_text(size = 12),
        legend.box.background = element_rect(linewidth = 1),
        legend.position = "bottom")
2013 Seagrass Beds in Casco Bay.
2013 Seagrass Beds in Casco Bay.

Flip back and forth between the two maps. Qualitatively, it looks like beds are less dense.

Data Tip

You can plot multiple plot panels next to each other using the patchwork library.

R

library(patchwork)

beds_2013 <- ggplot() +
  geom_sf(data = seagrass_casco_2013, 
          aes(color = Cover_Pct, fill = Cover_Pct),
          linewidth = 2) +
  scale_color_manual(values = bed_colors) +
  scale_fill_manual(values = bed_colors) +
  labs(color = '% Cover of Seagrass', fill = "% Cover of Seagrass",
       title = "Casco Bay Seagrass Beds in 2013") +
  coord_sf() +
  theme_minimal(base_size = 14) 

beds_2022 <- ggplot() +
  geom_sf(data = seagrass_casco_2022, 
          aes(color = Cover_Pct, fill = Cover_Pct),
          linewidth = 2) +
  scale_color_manual(values = bed_colors) +
  scale_fill_manual(values = bed_colors) +
  labs(title = "Casco Bay Seagrass Beds in 2022") +
  coord_sf() +
  theme_minimal(base_size = 14) 

# the patchwork - note removing one legend for ease of viz
# as they are the same but different text
(beds_2013 & theme(legend.position = 'bottom')) + 
  (beds_2022 & theme(legend.position = "none"))  

Key Points

  • Spatial objects in sf are similar to standard data frames and can be manipulated using the same functions.
  • Almost any feature of a plot can be customized using the various functions and options in the ggplot2 package.